S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis.

نویسندگان

  • Aldo A Rodriguez-Menchaca
  • Ernesto Solis
  • Krasnodara Cameron
  • Louis J De Felice
چکیده

BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na(+) carry the initial S(+)AMPH-induced current, whereas Na+ and Cl(-) carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na(+) and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A quantitative model of amphetamine action on the 5-HT transporter

BACKGROUND AND PURPOSE Amphetamines bind to the plasmalemmal transporters for the monoamines dopamine (DAT), noradrenaline (NET) and 5-HT (SERT); influx of amphetamine leads to efflux of substrates. Various models have been proposed to account for this amphetamine-induced reverse transport in mechanistic terms. A most notable example is the molecular stent hypothesis, which posits a special amp...

متن کامل

INFLUENCES OF DIFFERENT ADRENOCEPTOR AGONISTS AND ANTAGONISTS ON AMPHETAMINE- INDUCED CLIMBING IN MICE

Administration of apomorphine and amphetamine induces climbing behavior in mice due to stimulation of brain dopamine receptors. In the present study, the effects of adrenoceptor agonists and antagonists on amphetamine-induced climbing have been investigated. Intraperitoneal (i.p.) injection of different doses of amphetamine (2,4 and 8 mglkg) induced climbing in mice (p<O.OOO 1). The u2- ad...

متن کامل

Ion dependence of carrier-mediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion.

The mechanism of release mediated by the human dopamine and norepinephrine transporter (DAT and NET, respectively) was studied by a superfusion technique in human embryonic kidney 293 cells stably transfected with the respective transporter cDNA and loaded with the metabolically inert substrate [(3)H]1-methyl-4-phenylpyridinium. Release was induced by amphetamine, dopamine, and norepinephrine o...

متن کامل

Insights in how amphetamine ROCKs (Rho-associated containing kinase) membrane protein trafficking.

Amphetamine (AMPH) is a psychostimulant that induces efflux of dopamine (DA) within dopaminergic nodes, a phenomenon that has been recognized since the late 1950s (1). However, the ability of AMPH to alter DA transporter (DAT) cell surface expression did not emerge from the literature until the late 1990s (2). DAT, a key target of AMPH actions, is an important regulator of synaptic DA levels. F...

متن کامل

Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants.

Electrophysiological and pharmacological studies of a cloned human dopamine transporter (hDAT) were undertaken to investigate the mechanisms of transporter function and the actions of drugs at this target. Using two-electrode voltage-clamp techniques with hDAT-expressing Xenopus laevis oocytes, we show that hDAT can be considered electrogenic by two criteria. (1) Uptake of hDAT substrates gives...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • British journal of pharmacology

دوره 165 8  شماره 

صفحات  -

تاریخ انتشار 2012